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1o I n t r o d u c t i o n  

A lot of attention has been devoted in recent  yea r s  to the theory of quas i - s teady-s ta te  vibrational d i s t r i -  
butions of diatomic molecules  produced by vibrational V - V  exchange [1-7]. Quas i - s t eady-s ta te  distributions 
are interest ing in that their shape is determined to a significant extent by the anharmonici ty  of the vibrations 
of the molecules  and depends fa r  less  on the c r o s s  sect ions of e l ementa ry  p r o c e s s e s .  Under conditions in 
which V - u  exchange dominates over  a significantly large area,  the vibrational distribution consis ts  of a more  
rapidly decreasing Treanor  section and a slowly decaying plateau. The theory of the distribution f rom the 
plateau is given in [4]. The formation of the plateau in a vibrational distr ibution leads,  in par t icu lar ,  to the 
possibili ty of generation in a CO- lase r  [7]. Relaxation of the distribution f rom the plateau, which is associated 
with quenching in the a rea  in which V - V  p r o c e s s e s  are not a lready dominant, was d iscussed in [6]. 

A model of isolated modes in which the distr ibutions are established independently as a resul t  of V - V  
exchange within modes [2] has been adopted in the vibrational kinetics of multiatom molecules .  It is neces sa ry  
that V - u  exchange within modes be much more  probable than intermodal  V - V '  exchange (the exchange of a 
quantum of one mode for  quanta of another mode). One has Boltzmann distr ibutions in the harmonic approxima- 
tion, and the t empera tu res  may be different due to a difference in the pumping and quenching ra tes  of the modes.  

However,  if sufficiently high levels are excited, then the harmonic  approximation becomes inadequate 
(the T reanor  effect). The model of isolated modes becomes inadequate along with the harmonic  approximation. 
Actually, the r igorous division of the vibrations of molecules into modes is possible only in the harmonic  ap- 
proximation.  T e r m s  proport ional  to the products of the vibrational numbers  of different modes a r i se  upon 
taking account of anharmonici ty in the energy equation of vibrational levels.  This anharmonic relation of modes 
leads to a coupling of the vibrational distr ibutions.  Therefore ,  the topic of d iscuss ion for  multiatom molecules 
should be the spatial distr ibution of the vibrational mode numbers .  

The distribution f rom the plateau and its relaxation in multiatom molecules  are discussed in this paper.  
The concept of a flux of vibrational quanta, which permi ts ,  in par t icular ,  deriving a genera l  formula  describing 
the relaxation rate  (applicable to diatomic molecules  as welh, lies at the basis of the analysis.  There  is no 
necess i ty  to calculate distributions in an area in which quenching is significant. 

Let us consider  a bimodal anharmonic osci l la tor  as a model of a mult iatom molecule.  For  definiteness, 
we will speak of a symmet r i ca l  and an asymmet r ica l  mode. The excitation energy of the levels of the osci l la tor  
is descr ibed by the formula  

E , ~  = o~.v ~ o~2u - -  x lv  ~ --x12vu - - x ~ u  2, (1.1) 

where v and u are  the vibrational numbers  of symmet r i ca l  (1) and a symmet r i ca l  (2) modes ,  respect ively,  w i 
are vibrational quanta, and x i are anharmonici ty constants.  The vibrational levels of a bimodal osc i l la tor  can 
be conveniently represented  in the plane of the vibrational numbers  vu, where they form a square  grid (Fig. 1). 

Let us suppose that V - u  exchange within each mode is far  more  probable in a ra ther  large region than 
intermodal  and v ib ra t iona l - t r ans la t iona l  V--T exchange and other p rocesses  which do not conserve the number  
of quanta. Then one can neglect  all p roces ses  except V - V  exchange. Applying Bol tzmann's  I f- theorem, one 
can show that a T reanor - type  distribution [1] is obtained in this approximation which cor responds  to equality 
of di rect  and inverse p rocesses  in all t ransit ions [8]. The Treanor  distribution for  a bimodal osc i l la tor  is of 
the form 
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Fig. 1 

n~,= exp[--2bi l ly  --2b2~z2u -{- b,v' + b12vu -{-" b,.u~ ], (1.2) 

where bi = xL/T, T is the tempera ture ,  and a i are constants associated with the vibrational t empera tures  of the 
modes; n00 = 1 is assumed here  and below. The rote of the anharmonic t e rms  of (1.2) becomes significant if  
the constants a i are small in compar ison with the number of levels being considered in the corresponding mode. 
Due to the te rm bl2vu in the exponent of the exponential, the Treanor  distribution is not r e p r e s e n t e d b y t h e p r o d -  
uct of functions which depend (each of them) on the vibrational number  of a single mode. 

The values of the vibrational quanta of symmet r i ca l  and asymmetr ica l  modes are constant along s t ra ight  
lines (isoquantum lines) : 

and 

2blv ~ b12u = const (1.3) 

2b~u zr bl~v = const {1.4) 

respect ively .  The families (1.3) and (1o4) contain lines on which part ial  der ivat ives  of the Treanor  distr ibution 
vanish~ These lines bound a cer ta in  a rea  around the origin of coordinates which we will call the T r e a n o r  r e -  
gion (see Fig. 1)o 

However, it is impossible  to r e s t r i c t  oneself to the T reanor  distribution. The point is that the dis tr ibu-  
tion (1.2) inc reases  rapidly outside the T reanor  region. This inc rease  is nonphysical,  since there is always 
strong quenching on the upper levels ,  which l imits  their  population. The nonphysical  behavior  of the dis t r ibu-  
tion for  la rge  vibrational  numbers  is the resul t  of the ra the r  s t rong assumptions made in the derivation. If 
one weakens these assumptions somewhat,  it is possible to derive a distribution caused by V - V  exchange but 
which also sat isf ies  the n e c e s s a r y  boundary conditions. 

2 .  F o r m u l a t i o n  o f  t h e  K i n e t i c  M o d e l  

The population distribution in the grid of levels is described by the balance equations 

dnvu .~u ~v§ .~_ .vu _.v,u§ 
d--Y- = ] ~ - - i . ~  - -  : ~ u  . I v , ~ - - I  - -  ] , , ,  , ( 2 . 1 )  

.YU where I v _  1,u, for example,  is the difference between the number  of direct  and inverse  transi t ions f rom the 
point v - l ,  u to the point vu, which we call  the part icle  cur ren t .  (We r e se rve  the term "flux," which is  used 
commonly in this situation, for  another quantity.) The presence  of just cur ren ts  between adjacent levels is 
associated with the assumption of s ingle-quantum V - V  exchange. The currents  flowing along the v and u axes 
are proport ional  to the significantly different V - V  exchange constants in symmet r i c a l  and asymmet r i ca l  modes,  
respect ively .  Obviously, the V - V  exchange constant in an asymmet r i ca l  mode is usually much l a r g e r  than that 
in a symmet r i ca l  mode. This situation is associated with the fact that V - V  exchange in an in f ra red-ac t ive  
asymmetr ica l  mode occurs  on account of the long-range d ipo le -d ipo le  interact ion of the molecules  [9]. 

In o rde r  to obtain a distr ibution which satisfies the boundary conditions, it proves  neces sa ry  to res t ra in  
the excitation and quenching p rocesses  in cer ta in  boundary transitions~ Equati(m (2.1) is p rese rved  in the r e -  
maining pa r t  of the plane. We note that a distribution which is not dependent on the ratio of the V - V  exchange 
constants in asymmetr ica l  and symmet r i ca l  modes should have been obtained (s imilar ly to the Treanor  d is t r i -  
bution) upon setting the V - V  cur ren t s  (in transi t ions without pumping and quenching) to zero .  However,  the 
number  of equations would exceed by a factor  of two the number  of points, i .e. ,  the number  of unknown popula- 
tions. As one can show, these equations are consistent  only in the pure Treanor  case.  Therefore ,  the d i s t r i -  
bution will depend on the ratio of the V - V  exchange constants in the modes in the p resence  of pumping and 
quenching in some transi t ions.  
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Let  us  c o n s i d e r  the c a s e  in  which t h i s  r a t i o  i s  s m a l l .  Then  one can  n e g l e c t  the  c u r r e n t s  in the s y m m e t -  
r i c a l  m o d e ,  a s s u m i n g  tha t  V ' V  r e l a x a t i o n  o c c u r s  fo r  such  a s h o r t  t i m e  in the  a s y m m e t r i c a l  m o d e  tha t  t h e r e  
i s  no t i m e  f o r  r e l a x a t i o n  to o c c u r  in the  s y m m e t r i c a l  m o d e .  When the c u r r e n t s  in the  s y m m e t r i c a l  m o d e  a r e  
i nc luded ,  an a n a l o g y  a r i s e s  with the p r o b l e m  of the v i b r a t i o n a l  d i s t r i b u t i o n  in a m i x t u r e  of d i a t o m i c  m o l e c u l e s .  
One can  c o n s i d e r  V - V  p r o c e s s e s  as the  t r a n s f e r  of  e x c i t a t i o n  quan ta  f r o m  one t r a n s i t i o n  to ano the r .  When 
the V - V  c u r r e h t s  in each  t r a n s i t i o n  a r e  z e r o ,  the  a r r i v a l  r a t e  of quanta  i s  equal  to the d e p a r t u r e  r a t e .  T h e r e -  
f o r e ,  the  equa t ion  f o r  z e r o  V - u  c u r r e n t  can  be c o n s i d e r e d  to be  the con t inu i ty  equa t ion  f o r  the f lux  o f  quanta .  
We wil l  w r i t e  the  equa t ion  fo r  the V - V  c u r r e n t  in  the f o r m  

w h e r e  

v S ~  O, z : z  

r ,m  

S . . . . .  = Q~urrn (n,unv--r,u--rn+i - -  e--(b,~+2b,m) nv,u+ln~--r . . . .  ).. 

The r a t e  c o n s t a n t  of the c o r r e s p o n d i n g  p r o c e s s  has  the  f o r m  

Q~urm = Q(u ~ 1) (u - m -t- 1) exp [--]b12r -1- 2b2mlU(2b~)~A]i, 

(bl~r -~ 2b~m ~ 0), 

w h e r e  Q i s  the r a t e  c o n s t a n t  of  the  no--defect  exchange  01 + 00 - -  00 + 01 and z i s  equal  to one for  c l o s e  and to 
two f o r  l o n g - r a n g e  i n t e r a c t i o n  [2, 5, 9]. The  f lux  of quan ta  i s  d i f f e r e n t  f r o m  z e r o  in  the p r e s e n c e  of s o u r c e s  
in t r a n s i t i o n s  w h e r e  the b o u n d a r y  cond i t i ons  a r e  s p e c i f i e d .  The  s o u r c e s  and s inks  of quan ta  a r e  shown a s  
a r r o w s  in F i g .  1. S a t i s f a c t i o n  of the b o u n d a r y  cond i t ions  i s  a s s o c i a t e d  with the  cho ice  of the s t r e n g t h  of the 
b o u n d a r y  s o u r c e s .  

Since  the e n e r g y  d e f e c t  does  not  depend on the d i s t a n c e  of  a V - V  exchange  a long an i s o q u a n t u m  l ine ,  the 
e f f ec t ive  m e a n  f r e e  pa th  of quan ta  a long i s o q u a n t u m  l i n e s  i s  l i m i t e d  only  by  the d i m e n s i o n s  of  the a r e a  of  v i -  

b r a t i o n a l  n u m b e r s .  The  p r o b a b i l i t y  of l a r g e  m e a n  f r e e  p a t h s  in  the t r a n s v e r s e  d i r e c t i o n  i s  s m a l l ,  so tha t  the 
t r a n s f e r  i s  of  a d i f fuse  n a t u r e .  The  m o r e  e f f ec t ive  t r a n s f e r  a long i s o q u a n t u m  l i n e s  i s  q u a s i - s t e a d y - s t a t e  with 
r e s p e c t  to t r a n s v e r s e  t r a n s f e r .  T h i s  fac t  i n d i c a t e s  that  i t  i s  p o s s i b l e  to s e t  the t r a n s f e r  along i s o q u a n t u m  
l i n e s  to ze ro ,  i . e . ,  nvunv_r ,  n - m + t  - n v ,  u 4 1 n v - r , u - m  = 0 when bl2 r + 2b2m = 0. Hence  i t  fo l lows  tha t  the  d e r i v -  
a t i ve  ~ln n / a u  i s  c o n s t a n t  a long  an  i s o q u a n t u m  l ine ,  i . e . ,  

O~'lnn/OlOu = 0. (2.2) 

F r o m  (2.2) we ob ta in  

n = V(v)Tl(u), (2.3) 

w h e r e  ~ i s  the c o o r d i n a t e  o r t hogona l  to the i s o q u a n t u m  l ine .  T r a n s f o r m i n g  to the c o o r d i n a t e s  

~t ~- u -~ v tg r162 tg T = bi2/2b,, ~ = v, 

we f ind the r e p r e s e n t a t i o n  (2.3) fo r  the T r e a n o r  d i s t r i b u t i o n  

V(v) = exp [ ( - -2b ,a  1 q- 2b~a~ tg q~)v ~- (b 1 - -  (b~:/2) tg ~)v~], 

~(u) -= exp [--2b2a ~ ~- b,u' j ,  

w h e r e  the n o r m a l i z a t i o n  V(0) = 77(0) = 1 i s  chosen .  R e p r e s e n t a t i o n  of the  popu la t ion  in the f o r m  (2.3) i n d i c a t e s  
that  d i s t r i b u t i o n s  with r e s p e c t  to u in  VkU l a y e r s  d i f f e r  f r o m  each  o t h e r  by a c o m m o n  m u l t i p l i e r  and a sh i f t  by 
the amoun t  v k tan ~v. 

The n u m b e r  of quan ta  t r a n s f e r r e d  f r o m  t r a n s i t i o n s  be tween  the i s o q u a n t u m  l i n e s  t r - ~  and f f - r ~  + 1 to 
t r a n s i t i o n s  b e t w e e n  the i s o q u a n t u m  l i n e s  iY and ~' + 1 i s  equa l  to 

~ s i n c p  (~--m~)/sin tp 

0 0 
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whe re 

~ n = m + r t g ~ ;  

Using the representat ion (2.3) for  the population, we obtain 

~ = e ~ - ~  <. + ~ > <~ - .~ + ~> ~ (~) ~ ( ~ -  g)  [~ (~) ~ ( ;  - 7. + ~) - ~ - ~ : - ~  (~ + ~) ~ ( ;  _ 7~)], 

whe re 

~ ( ; +  t - ~, tg q,) v ( , ; )  d~, ( u +  t> = ~.(~) . 

and the quantity 

~'/sin ? 

g(~)= J" v(~)a,, 
0 

plays the ro le  of the s tat is t ical  weight of the isoquantum line, 

The total flux through the isoquantum line ffk is equal to 

n = .f~a f H~a~7,. 
i uh 

(2.4) 

Since small  ~ make the main contribution to the integral  (only if the population does not decrease  too rapidly), 
the integraad can be represented in differential fo rm 

: ~ - ~ ' t a  , "  d ~ H = Q .! ,,~ ,~ ~m- (u)'-g=~l: 12b~ -- In ~ttdu"]. (2.5) 
i 

Equation (2.5) changes into the one-dimensional  case  ~Zaen g = 1. 

3 .  I n v e s t i g a t i o n  o f  t h e  K i n e t i c  M o d e l  

Equating the flux through an isoquantum line to a constant,  we cbtain a differential  equation for  the func- 
tion ~(u~. Initially, we neglect  the dependence of < u > and g on ~. Then 

, ~12[2b~--d ~ In ~lldu2] = P = const. 

Introducing the scale t ransformat ion  

= cV-P, ( 3 . 1 )  

we obtain the equation 

C d ~ C / ~  ~ - -  ( d C / & ~ "  9 . " = --.b.C" + t O. (3.2) 

Lowering the o r d e r  with the help of the substitution dC/dff = 7, we obtain an equation which reduces  to a homo- 
geneous one. its genera l  integral  gives a f i r s t - o r d e r  equation for C: 

dC/E~ = ~ V.f( c~), (3.3) 

~ e  r e  

f ( C  ~) = 2b2C ~" In (C~ /A  2) + t'~ 
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and A 2 is an integrat ion constant.  Ecalation (3.3) in its final form is not integrableo Due to the fact that C 2 In 
(C2/A ~) has a minimum, which is equal to - (A~/e) ,  three  cases  are  distinguished in the investigation of the 

equation: 

1. A2< e /2b 2. In this c a s e f ( C  2) is everywhere  posit ive.  Therefore ,  the integral  curves  are monotonic.  
The descending curves ,  s tar t ing f rom the point C 2 > A~/e, have points of inflection at C 2 = A2/e < 1/2b2, asso-  
ciated with the minimum of the function f (C2). 

2. A 2 > e /2b 2. In this c a s e f ( C  2) has two zeroes ,  between which it is negative. Therefore ,  the descend- 
ing curves ,  s tar t ing f rom the point C~ > 1/2b 2, have a minimum (above 1/2b2) at which the descending branch 
changes into the ascending branch.  

3. A 2 = e/2b 2. In this c a s e f ( C  2) has one zero at C 2 = 1/2b 2, which is the point of tangency. The descend-  
ing curves ,  s tar t ing f rom the point C 2 > 1/2b 2, behave as 

B w 

C ---- (l/-V2b~) r -F ~)l, (3.4) 

near  the s traight  line C = 1 / ~ ,  asymptotical ly approaching a constant. Here o~ is an integration constant~ 

When C ~ >>1/2b2, integration of (3.3) gives 

where 

C = Co exp ( --2b2=~'~ -}- b~2), 

C o ---- ( l / ] / ~ )  e:cp ( b ~  -~ 1/2); 

(3.5) 

and oe 2 is an integration constant. 

Equation (3.5) sat isf ies  the Treanor  distribution. Curves which have a Treanor  section s ta r t  f rom large 
�9 Co, i~ they correspond to small  fluxes, as follows f rom (3ol). 

If we r e s t r i c t  ourselves  to curves which have a Treanor  section, only the descending curves  in case 1 
(which have a point of inflection to the right of which they are convex upward) can sat isfy the condition of rapid 
decline at large ~" (corresponding to a Boltzmann distribution at the gas temperature) .  The choice of the con- 
stant A 2 is res t r i c ted  also by the condition that C be positive when ~" < N, where N determines  the size of the 
area  in which V - V  exchange dominates.  Since N is large and the functions which are the solutions of (3.2) 
change rapidly (the behavior  of the T r e a n o r  type of increase) ,  only a curve which is close to a constant (to the 
solution of case 3) over  a ra ther  large a rea  can sat isfy both conditions {positiveness andrapid decline when 
fr ~ N)~ The solution over  almost the entire a rea  depends very weakly on the specific form of the boundary 
conditions at ~ .., No In this case a solution can be obtained over  the entire area  by the matching of (3.4) and 
(3.5). Returning to the function 7, we obtain 

*l = ~ p  ( - 2 b ~ 2 +  b ~  2) 

in the Treanor  region and 

in the plateau region. The selected solution is associated with the specific quantity 

P = l/Co = 2b., exp (-- 2b.2~z 2 -- t), 

and hence with the specific value of the flux of quanta. 

If we take account in (2.5) of the fact that 

(u> 2g2 ~ u  ~, 
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0,21 

Fig. 2 

where k var ies  f rom two in the case of weak excitation of a symmet r i ca l  mode to four when V(v) = const, then 
in view of the smal lness  of the derivative d 2 In 7//d~ 2 in the plateau region, we find 

~1 ~ I/'~ ~/2. 

The variat ion of the function ~/does not extend into the Treanor  region when fac tors  dependent on ~' are  taken 
into account. There fore ,  the level of the plateau which is matched to the T r e a a o r  region in the neighborhood 
of the Treanor  minimum does not vary  significantly. Since the value of the quantum flux is associated with the 
level of the plateau, we have 

A3/z 
H = n5oQ---7. F (3/z, t/A) <u (r ~ (ct,) �9 2b. z exp (-- 2b~a 2 - -  1), (3.6) 

where F(3/z, l /A)  is the incomplete g a m m a  function and the quantities <u(oz2)> and g(c~2) are related to the 
line of the T r e a n o r  minimum. The population of the ground level is introduced explicitly in (3.6). 

The possibi l i ty of changing to the differential expression in (2.4) is tied to the requirement  of a small  
probabili ty of V - V  exchange between the plateau region and the T reano r  section.  The corresponding cr i ter ion 
of "s t rong  excitation" is of the form 

exp [@A - - 112] 2b . >> I .  

Equation (3.6) de termines  the relaxation rate of the distr ibution f rom the plateau, which is related to quenching 
on the upper levels.  There  is no need for specific definition of the quenching p rocesses  and the calculation of 
the distribution in the region of s t rong quenching. The energy equation of the asymmetr ica l  mode is of the form 

d E J d t  = -- (%II, (3.7) 

where E 2 is the energy of the asymmetr ica l  mode. In the case of a constant flux of quanta across  an isoquantum 
line, the energy flux dec reases  along with the value of a quantum. The decrease  in the energy flux is necessa ry  
due to V - V  dissipation. Thus, the energy equation in the form (3.7) takes into account not only quenching on the 
upper levels ,  but also V - V  dissipation over  the entire reg ion .  

Let us now discuss  the vibrational distribution in CO 2 molecules .  In CO 2 F e r m i - r e s o n a n c e  exerts  a strong 
effect on the vibrational distribution in the symmet r i ca l  and f lexuralmodes ,  because of which it is neces sa ry  to 
consider  all three modes.  One can represen t  the excitation energy of the vibrational levels approximately in 
the fo rm (L1), where it is now neces sa ry  to understand v as being the vibrational number  of a multiplet v = 2vI+ 
v 2 (vl, 2 are  the vibrational numbers  of the symmet r i ca l  and f lexuralmodes) ,  plus a term which descr ibes  the 
Fermi  division. The Fe rmi  division does not depend on u; therefore ,  it does not have any effect on V - u  ex- 
change in the asymmet r ica l  mode. Thus it follows that the resul ts  derived above in the absence of the Fe rmi  
division are p rese rved  for  the combined populations of multiplets .  

The population distribution within multiplets is a Boltzmann distribution at the gas temperature .  When 
the vibrational temperature  of the F e r m i - r e s o n a n c e  modes is high (and the gas tempera ture  is low), the d is t r i -  
bution in them can have a sawtoothed shape [8]. The possibi l i ty of obtaining l a se r  generation [10] is based on 
this fact.  The sawtoothed shape is expressed more  in layers  of the asymmet r ica l  mode with high vibrational 
numbers  (in the plateau region with respec t  to u). 
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Quenching is associated mainly  with the lower  levels  when the t empera tu re  of the asymmet r ica l  mode is 
low. Upon excitat ion of the distr ibution f rom the plateau, quenching descr ibed  by Eqs.  (3.6) and (3.7) is also 
added. The flux of quanta i nc rea se s  rapidly as the vibrational t empera tu re  goes up, which resu l t s  in a r e s t r i c -  
tion on the la t te r .  

The distr ibution in the plane of the vibrational numbers  (0 -< v -< 5, 0 -- u _< 17) is i l lus t ra ted  by the ex- 
ample of NO 2 (T = 300~ n0Jn00 = nl0/n00 = 1/2) in Fig.  2. The NC~ molecule  has three nondegenerate vibra-  
tional modes:  symmet r i ca l ,  f lexural,  and asymmet r i ca l .  The f l exura lmode  has the lowest quanta; the re fo re ,  
i t  is quenched more  s t rongly than the o thers  and is cons idered  to be unexcited.  

The author exp re s se s  his grat i tude to S. Ya. Bronin,  M. B. Zheleznyak,  and G. V. Naidis  fo r  valuable 
d iscuss ions .  
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